Branes on Poisson varieties
نویسنده
چکیده
We first extend the notion of connection in the context of Courant algebroids to obtain a new characterization of generalized Kähler geometry. We then establish a new notion of isomorphism between holomorphic Poisson manifolds, which is non-holomorphic in nature. Finally we show an equivalence between certain configurations of branes on Poisson varieties and generalized Kähler structures, and use this to construct explicitly new families of generalized Kähler structures on compact holomorphic Poisson manifolds equipped with positive Poisson line bundles (e.g. Fano manifolds). We end with some speculations concerning the connection to non-commutative algebraic geometry.
منابع مشابه
On quantization of singular varieties and applications to D-branes
We calculate the ring of differential operators on some singular affine varieties (intersecting stacks, a point on a singular curve or an orbifold). Our results support the proposed connection of the ring of differential operators with geometry of D-branes in (bosonic) string theory. In particular, the answer does know about the resolution of singularities in accordance with the string theory p...
متن کامل5 Poisson - Dirac branes in Poisson - Sigma models by Iván Calvo and Fernando Falceto
We analyse the general boundary conditions (branes) consistent with the Poisson-sigma model and study the structure of the phase space of the model defined on the strip with these boundary conditions. Finally, we discuss the perturbative quantization of the model on the disc with a PoissonDirac brane and relate it to Kontsevich’s formula for the deformation quantization of the Dirac bracket ind...
متن کاملCoisotropic Submanifolds in Poisson Geometry and Branes in the Poisson Sigma Model
General boundary conditions (“branes”) for the Poisson sigma model are studied. They turn out to be labeled by coisotropic submanifolds of the given Poisson manifold. The role played by these boundary conditions both at the classical and at the perturbative quantum level is discussed. It turns out to be related at the classical level to the category of Poisson manifolds with dual pairs as morph...
متن کاملDual branes in topological sigma models over Lie groups. BF-theory and non-factorizable Lie bialgebras
We continue the study of the Poisson-Sigma model over Poisson-Lie groups. Firstly, we solve the models with targets G and G∗ (the dual group of the Poisson-Lie group G) corresponding to a triangular r-matrix and show that the model over G∗ is always equivalent to BF-theory. Then, given an arbitrary r-matrix, we address the problem of finding D-branes preserving the duality between the models. W...
متن کاملStar products and branes in Poisson-Sigma models
We prove that non-coisotropic branes in the Poisson-Sigma model are allowed at the quantum level. When the brane is defined by second-class constraints, the perturbative quantization of the model yields Kontsevich’s star product associated to the Dirac bracket on the brane. Finally, we present the quantization for a general brane.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008